4. Галышев Ю.В., Вылегжанин Г.А., Румянцев В.В., Серебренников В.А. Влияние пароводородной добавки в рабочую смесь карбюраторного двигателя на процессы сгорания и тепловыделения //Науч.тр. Л.: ЛПИ. — 1983.— № 394.— с.29—33.

ИССЛЕДОВАНИЕ ЭНЕРГЕТИЧЕСКОЙ И ЭКОЛОГО-ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ БИОДИЗЕЛЬНОГО ТОПЛИВА В ПОЛНОМ ЖИЗНЕННОМ ЦИКЛЕ

Козлов А.В. (ФГУП «НАМИ»)

Человечество ищет пути выхода из экологического и энергетического кризиса. По мере истощения запасов нефти и природного газа все больший интерес привлекают к себе возобновляемые источники энергии. В двигателях внутреннего сгорания могут использоваться биотоплива, получаемые из биомассы. Наибольший интерес для условий Российской Федерации представляет биодизельное топливо. Биодизельное топливо обладает целым рядом преимуществ в сравнении с дизельным топливом нефтяного происхождения: имеет более высокое цетановое число, исключительно низкое содержание серы в топливе, безвредно для окружающей среды, снижает выбросы СО, СН и частиц при работе дизеля, снижает выбросы парниковых газов (с учетом поглощения СО2 из атмосферы в период роста биомассы).

Представляет интерес количественная оценка эффективности применения биодизельных топлив в дизелях с учетом затрат энергии, выбросов вредных веществ и экономики использования этого вида альтернативных топлив. В современных условиях целесообразно производить оценку эффективности применения биотоплив в полном жизненном цикле [1,2].

Проведенный анализ литературных данных и данных экспериментальных исследований позволил выбрать для анализа несколько вариантов топлив: смесевые топлива, содержащие различное количество биодизельного топлива и биодизельное топливо в чистом виде. В рассмотрение включены два вида биотоплив потенциально применимых для условий Российской Федерации: из рапсового масла и из соевого масла. Все варианты биотоплив, рассматриваемые в данной статье представлены в табл. 1.

Таблица 1Варианты топлив для проведения анализа жизненного цикла

1	1	1 7 1	1
	Обозначение		
Смесь 20% биоди	Б20 (соя)		
Смесь 50% биоди	зельного топлива из со	ои и 50% дизтоплива	Б50 (соя)
Биодизельное топ	Б100 (соя)		
Смесь 20% биоди	зельного топлива из ра	пса и 80% дизтоплива	Б20 (рапс)
Смесь 50% биоди	зельного топлива из ра	пса и 50% дизтоплива	Б50 (рапс)
Биодизельное топ	ливо из рапса		Б100 (рапс)

В анализ для сопоставления включено также традиционное нефтяное дизельное топливо.

На основании математической модели материальных и энергетических потоков, а также методик расчета ущерба, наносимого окружающей среде, и расчета экономической эффективности применения биотоплив [3,4], были проведены расчеты показателей в полном жизненном цикле для всех выбранных вариантов. В ходе расчетов были определены: расход невозобновляемых природных ресурсов;

расход энергии; выброс вредных веществ в атмосферу; ущерб, наносимый окружающей среде; экономические затраты на реализацию жизненного цикла топлива.

Все представленные ниже результаты оценки полного жизненного цикла отнесены на 1 кВтч работы, производимой дизелем, для удобства сравнения вариантов.

Ниже приведены исходные данные для проведения расчетов.

Принято, что дизель, рассматриваемый в данном анализе, удовлетворяет требованиям норм Евро-2 для двигателей автомобилей полной массой более 3,5 т (Правила №49 ЕЭК ООН), действующим в настоящее время в Российской Федерации. Показатели дизеля, работающего на дизельном топливе, представлены в табл. 2.

Таблица 2. Показатели дизеля при работе на дизельном топливе (по испытательному циклу в соответствии с Правилами 49 ЕЭК ООН), г/кВтч

Показатель	Величина		
Удельный расход топлива	240		
Выброс СО	4		
Выброс СН	1,1		
Выброс NO _x	7		
Выброс РМ	0,15		
Выброс SO ₂	0,12		
Выброс СО2	773,3		
Выброс СН4	0,025		

При оценке стадии эксплуатации полного жизненного цикла использовались показатели двигателей в 13-и ступенчатом испытательном цикле в соответствии с Правилами 49 ЕЭК ООН. Было принято, что при конвертации двигателей для работы на биотопливах обеспечивалась такая же мощность на режимах испытательного цикла, как и при работе на нефтяном топливе.

Показатели силовых установок при использовании различных видов топлив в дизеле представлены в табл. 3. Показатели были получены на основе проведенных экспериментальных исследований и литературных данных и заданы в процентах по отношению к дизелю (принятому за 100%), работающему на дизельном топливе.

Таблица 3. Относительные показатели использования альтернативных топлив в дизеле

militarium i Anadul								
Характеристики	Б20	Б50	Б100	Б20	Б50	Б100		
вариантов	(соя)	(соя)	(соя)	(рапс)	(рапс)	(рапс)		
КПД	100	100	100	100	100	100		
Выброс СО	87	78	56	91	78	55		
Выброс СН	89	72	44	87	67	37		
Выброс NO _x	101,2	103	106	101,5	103	106		
Выброс РМ	82	70	45	88	75	55		
Выброс SO ₂	80	50	5	80	50	5		
Выброс СН4	100	100	100	100	100	100		

Для расчета экономических показателей альтернативных топлив использовались следующие величины стоимости топлив (на 1.01.2007 г.), полученные на основе анализа рыночных цен: дизельное топливо – 17,4 руб./л, биодизельное топливо – 10 руб./кг (8,8 руб./л).

В расчетах принято, что дизель работает на смесевых и чистых биодизельных топливах без какого-либо изменения конструкции и имеет тот же ресурс, что и при

работе на дизельном топливе. Заправка осуществляется с использованием существующей инфраструктуры для дизельного топлива.

При расчетах не учитывались капиталовложения в развитие производственных мощностей по получению биотоплив.

В табл. 4 представлены результаты оценки полного жизненного цикла дизтоплива и биотоплив. Анализируя полученные результаты, можно отметить, что наибольшее количество энергии расходуется при получении биодизельного топлива из соевого масла, что связано с более высокими затратами энергии на процесс выращивания биосырья. В то же время получение биотоплив связано с уменьшением затрат ископаемых природных ресурсов пропорционально увеличению доли заменяемого дизельного топлива. Переход на использование чистого биодизельного топлива позволяет снизить расход невозобновляемых природных ресурсов на 55...65%.

На стадии получения топлив наибольшие суммарные выбросы характерны для получения соевого биодизельного топлива (на 20% выше, чем для дизтоплива) и смесевых топлив на его основе. При получении рапсового биодизельного топлива в атмосферу попадает на 15% меньше вредных веществ, чем при получении дизтоплива.

Таблица 4. Показатели топлив в полном жизненном цикле

	Дизтоп-	Б20	Б50	Б100	Б20	Б50	Б100
Показатель	ЛИВО	(соя)	(соя)	(соя)	(рапс)	(рапс)	(рапс)
Расход ресурсов,							
г/кВтч							
уголь	2,9	2,4	1,6	0,0	2,4	1,6	0,0
нефть	253,8	214,2	151,5	37,2	212,8	147,7	28,1
природный газ	8,2	21,5	42,5	80,9	18,2	34,1	63,2
всего	264,9	238,1	195,6	118,1	233,4	183,3	91,3
Расход энергии,							
МДж/кВтч	13,4	13,8	14,6	15,9	13,6	14,0	14,7
Выброс, г/кВтч							
CO	4,52	4,07	3,84	3,17	4,15	3,62	2,67
CH	2,08	1,96	1,78	1,50	1,81	1,40	0,73
NO_x	7,49	7,78	8,24	9,05	7,81	8,26	9,09
PM	0,30	0,26	0,22	0,15	0,31	0,32	0,35
SO_2	1,23	1,05	0,77	0,27	1,01	0,66	0,04
CO_2	865,63	752,64	573,78	247,76	742,85	547,77	189,83
CH ₄	0,74	0,76	0,78	0,82	0,61	0,41	0,04

Суммарные выбросы вредных веществ при переходе на биотоплива уменьшаются (на 17...18% на чистом биодизельном топливе), однако наблюдается некоторый рост выбросов оксидов азота.

Наибольший расход энергии наблюдается в полном жизненном цикле соевого биодизельного топлива, наименьший — дизельного топлива, то есть применение биотоплив связано с увеличением суммарного расхода энергии, из-за больших затрат энергии на стадии производства биотоплив, в сравнении с дизтопливом.

Вклад стадии производства топлив в расход энергии за полный жизненный цикл находится на уровне 25% для дизельного топлива и возрастает по мере увеличения доли биодизельного топлива до 37% у топлива из соевого масла и 32% - из рапсового масла.

Выбросы CO_2 в полном жизненном цикле топлив, в противовес расходу энергии тем меньше, чем выше доля используемого биотоплива. Применение биотоплив позволяет снизить выбросы диоксида углерода в 3,5...4,6 раза. Большее значение соответствует топливу, полученному из рапсового масла.

Ущерб от выброса вредных веществ уменьшается по мере увеличения доли используемого биотоплива и на чистом биодизельном топливе он на 15...16% ниже, чем при работе на дизтопливе. Такое относительно небольшое снижение ущерба связано с тем, что наряду с уменьшением выбросов продуктов неполного сгорания (СО,СН, частиц) при работе на биотопливах наблюдается увеличение выбросов оксидов азота.

Для удобства анализа полученных результатов диаграммы для расхода природных ресурсов, энергии, выбросов CO₂ и ущерба, наносимого окружающей среде представлены в относительных единицах, где за 100% принято дизельное топливо (см. рис.).

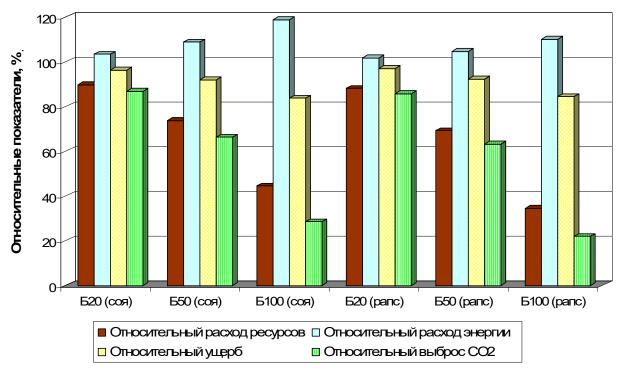


Рис. Относительные показатели сравниваемых вариантов топлив (за 100% приняты показатели дизельного топлива)

Основные результаты расчетов экономических показателей альтернативных топлив в полном жизненном цикле представлены в табл. 5.

Анализ полученных результатов показывает, что применение биотоплив при цене 10 руб./кг является экономически эффективным и позволяет при переходе на чистое биодизельное топливо снизить затраты в полном жизненном цикле с учетом ущерба на 40%. Некоторое отличие показателей при использовании биотоплив из соевого и из рапсового масла связано с различной теплотой сгорания этих топлив, а соответственно с различным их расходом в эксплуатации.

Основные результаты энерго-эколого-экономического анализа топлив показывают, что применение биодизельного топлива в сравнении с дизельным топливом в полном жизненном цикле позволяет:

- 1. снизить расход невозобновляемых природных ресурсов на 55...65%;
- 2. уменьшить выбросы париковых газов в 3,5...4,6 раза;
- 3. снизить ущерб окружающей среде на 15...16%;

4. уменьшить затраты с учетом ущерба на 40%.

В то же время применение биодизельного топлива связано с увеличением затрат энергии в полном жизненном цикле на 10...20% по сравнению с дизельным топливом.

Таблица 5. Результаты технико-экономической оценки биотоплив в полном жизненном цикле

	Диз-	Б20	Б50	Б100	Б20	Б50	Б100
Показатель	топли-	(соя)	(соя)	(соя)	(рапс)	(рапс)	(рапс)
	ВО						
Затраты за полный							
жизненный цикл,							
руб./кВтч	4,87	4,47	3,84	2,68	4,48	3,85	2,70
Ущерб от загрязне-							
ния окружающей							
среды, руб./кВтч	1,08	1,04	0,99	0,91	1,05	1,00	0,92
Затраты на ПЖЦ с							
учетом ущерба,							
руб./кВтч	5,95	5,51	4,83	3,59	5,53	4,85	3,62

Литература

- 1. Biodiesel Handling and Use Guidelines. U.S. Department of Energy: Office of Energy Efficiency and Renewable Energy, 2004. 68 p.
- 2. Economic Evaluation of Biodiesel Production from Oilseed Rape grown in North and East Scotland. SAC Consultancy Division, 2005. 134 p.
- 3. Звонов В.А., Козлов А.В., Кутенев В.Ф. Экологическая безопасность автомобиля в полном жизненном цикле. М.: НАМИ. 2001. 248 с.
- 4. Звонов В.А., Козлов А.В., Теренченко А.С. Методика оценки эффективности применения альтернативных топлив на автотранспорте в полном жизненном цикле // Сб. науч. тр. Моск. семинара по газохимии 2004-2005. М.: ФГУП Изд-во «Нефть и газ» РГУ нефти и газа им. И.М.Губкина, 2006. С.114-129.

КОНВЕРТИРОВАНИЕ ДВС С ГАЗОГЕНЕРАТОРАМИ, РАБОТАЮЩИМИ НА ОТХОДАХ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА

Горожанкин С.А., Чугреев А.С.

(Донбасская национальная академия строительства и архитектуры)

Недостаточные запасы нефти и газа в Украине вызывают необходимость экономии нефтяного топлива или использовании альтернативных топлив. Агропромышленный комплекс страны является мощным потребителем энергоресурсов, поэтому их экономия является одной из важнейших задач. В сельском хозяйстве в составе транспортных, стационарных и передвижных силовых установок широко используются двигатели внутреннего сгорания (ДВС), которые работают преимущественно на топливе нефтяного (реже на газе) происхождения. Применение местных и альтернативных топлив, отходов производства для работы ДВС дает возможность снизить проблему энергообеспечения, снизить вредные выбросы в окружающую среду. Искусственные топлива могут быть получены в газогенераторных установках.